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ABSTRACT

.We provel the existence of classical solutions to certain fully non-

linear second order elliptic equations with large zeroth order coefficient.

The principal tool is an a priori estimate asserting that the C 2'-norm
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SIGNIFICANCE AND EXPLANATION

The class of second order linear and nonlinear elliptic partial

differential equations models many phenomena in physics and control theory.

Linear elliptic equations are very well understood, and so certain classes

of "quasilinear" equations (with nonlinearities involving only lower order

derivatives) can be studied via modifications of the linear theory.

In this paper we prove some existence theorems for certain "fully

nonlinear" (= non-quasilinear) second order elliptic equations with large

zeroth order coefficient. The proofs depend upon a careful analysis of

various estimates for linear equations.
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FULLY NONLINEAR SECOND ORDER ELLIPTIC EQUATIO':S

WITH LARGE ZEROTH ORDER COEFFICIENT

Lawrence C. Evans* and Pierre-Louis Lions**

1. INTRODUCTION.

This paper describes a fairly simple method for proving the classical solxaiL

of certain fully nonlinear second order elliptic equations, provided the coeffi-ie:t

the zeroth order term is sufficiently large. Briefly, the idea is first to sho,.: h':-

a priori estimate that the C 2'a-norm of a solution cannot lie in a certain interval

(C,C 2 ) of the positive real line and, second, to eliminate by a continuation aryim..t

the possibility that this norm ever exceeds the constant C . (Our technique is

reminiscent of certain methods for proving global existence in time of solutions to

various nonlinear evolution equations with small initial data.)

We begin now the precise statements of our existence theorems by assuming that

2
F n .n . ] n -iR

is a given smooth function satisfying the ellipticity assumption

(2.1)F2Rn (p,q,r,x)i for all i.

n n n

(i~i)

for some real number e > 0 and all p E IR
n 

, q e M, r e IR, x e 
n . 

We also

suppose that there exists a constant M such that

(1.2) IF(O,0,0,x)f < M for all x

and

(1.3) IDF(p,q,r,x)I,ID
2
F(p,q,r,x)I < M for all p,q,r,x

Let us consider first the nonlinear partial differential equation

(1.4) u - F(D 2u,Du,u,x) = 0 in In .
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Our existence theorem is this:

Theorem 1. Under the above assumptions there exists a constant \0 such that (1.4)

has a unique solution

u C C3' (,
n
) (for all 0 1 a < 1)

provided

(1.5) X >
-O

The constant A0 depends only on n,e, and M. We prove Theorem 1 in §3, after first

obtaining in §2 the key estimate described above.

Our method applies also to nonlinear elliptic equations on a bounded domain, pro-

vided a restriction ((1.7) below) is placed on F. We consider the equation

Au - F(D u,Du,u,x) = 0 in 0
(1.6)Au

u = 0 on 3.1 ,

where Q C 3Rn  is a bounded smooth domain. Let us now suppose, in addition to (1.1)-

(1.3), that

(1.7) F(0,0,0,x) = 0 x e .

Theorem 2. Under these hypotheses there exists a constant A0 such that (1.6) has a

unique solution

u e C3,a 6) (for all 0 < a < 1)

provided

(1.8) X > A0

The constant X0 depends only on Q,6, and M. Theorem 2 is proved in §4.

In §5 we collect various comments concerning hypothesis (1.7) and also certain

extensions of our technique to related problems. The appendix (§6) contains some

lemmas concerning the standard Lp second order elliptic estimates.

Finally we note that Skrypnik (6] has obtained by a completely different method

some results on fully nonlinear elliptic equations (even of higher order) with large

zeroth order coefficient. Some other recent papers on fully nonlinear second order

elliptic equations are Evans-Friedman [21, P. L. Lions [5], and Evans [1].
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Notation.

Du~ (D .Dx Xn

2U DxlxI  "' x.' xD 2 u ( D.. ..... ,Dx  )

S I3  n n

The letter "C" denotes various constants depending only on known quantities.

ID u(x) - D su +Y~ su2u
lll2,a SUP n 2 D2u()I 2u(x) + Sup Du(x)I + sup lu(x)!

C ( x,yERm Ix - Y1, xe xCIR x e n

lull c2 is similarly defined. We employ the implicit summarion convention

throughout.

-3-



2. PRELIMINARY ESTIMATES.

The goal of this section is our proof (Lemma 2.3) that for \ ' , large

enough, there exists an interval (C ,C 2 ) in which the C 2,-norm of a solution of

(1.4) cannot lie. First, however, we must know that the solution and its gradient

behave well for large X; the first two lemmas provide this information.

Lemma 2.1. Suppose that v e C
2' (Rn) (for some 0 < a < 1) solves the linear

elliptic equation

(2.1) v - a. ,(x)v + b.(x)v + c(x)v = f(x)
1 ] x x 1 x1

in In, where

1a. II.lIcl,lfI <M

1j 3
aij Wx)i j > 61&1

2  
for all x,& e R

n

c 0

Then

(2.2) 1xv f Ii n
L (Jn) -- L (Jn)

Proof. The auxillary function

Ixl2wW x) -v vx)e
" 

j
€  (E > 0)

solves the p.d.e.

Awt E a..w E + b +cw
1]~ ~ X . X.

EWX 2 2 Elx 2 x. 2

= fe-ex
2 + a..[2Cx.v + 2Cxiv + 2e6 -42 xix le -  

- b. [2cx.vleC'
.13 j x i  I 1 1J 1

Since 1w(x) I -0 as lxi IE Iw£t attains its maximum at a finite point in .

Applying the maximum principle at this point and recalling the inequalities

1jxe I
x l 2  

C'X 2 e-CIx
1 2

we discover

1 L(n) f
L ( n ) 

+ C'- ( Dv1 L' (]Rn) + L (Fn) +

Now send c *0 to obtain (2.2).

-4-
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Lemma 2.2. Assume that u C 3, (0 , n i) solves (1.4). Then there -xi

a constant C such that0

(2.3) u

W (I.R)

The constant C is independent of X, provided is large enough.

Proof. We may as well assume

3F

(2.4) T- (p,q,r,x) < 0 for all p,q,r,x

since otherwise we can rewrite (1.4) in the form

-'u F' (D 2u,Du,u,x) = 0 in ,
n

for F' (p,q,r,x) a F(p,q,r,x) - Mr,V' = X - M.

Now u solves the equation

I F 2Xu [ (tD u'tDutux)dt u x
0 'ij

~~i 2

I (tD 2 utDu'tu'x)dtl Ux

[ 1 arp (tD 2u,tDu,tu,x)dtu

= F(0,0,0,,x) in n

Hypotheses (1.1) - (1.3) and (2.4) permit us to invoke Lemnma 2.1 and obtain the boa-ni

11 xu11 c .

Next let us differentiate (1.4) with respect to xk(k = 1,2,...,n): then we

that v -f u solves the linear p.d.e.

S- R (D UDuUx) - F (D2u,Du,u,x)v
ijp x

(2.5)

- 3F (D2 u,Du,u,x)v- =F (D2u,Du,u,x)
r )x k

We once more apply Lemma 2.1 to find

L-5-n)



Next is our main estimate:

Lemma 2.3. Fix some 0 < a < 1. Then there exist 0 > 0 and constants 0 < C C,

such that if u solves (1.4),

- 0

and

lull 2, ( n) - 2

then

llul 2  < C1
C2, a On) -1

Proof. Choose 6 so small and p so large that

(2.6) 0 < 3 < a = I
p

We recall from (2.5) that v M u (k = 1,2,...,n) solves the linear elliptic

equation

~F 2 ~ F 2F (D u,Du,u,x)vx + 'F (D Du,u,x)v
DPij x. j @i 1Du uuXV

xx 3g.ix

(2.7)
DF 2 F

+ -T (D uDuux)v = Av - - (D u,Du,u,x)
r ~ 3x k

the right hand side of which - according to Lemma 2.2 and assumption (1.3) - is bounded

on )R
n
, independently of X.

Denote by B1 and B2 any two concentric closed balls, of radius 1 and 2

respectively. We apply the standard elliptic interior L
p  

estimates to (2.7) and

obtain (see Lemma 6.1 in the appendix):

1uk lw2 (B lV~1 (B 1v 'P (BI)

N< nllc ( + 1) (11Xv- -k F 11c2)I.l + lvll
<- ~ u l C ,( 2 ) k L P(B ) + L P(B )C(B)2 2

< C(Ilull N + 1) (k = 1,2. n)

C ',(B 2)

for certain constants C and N (the precise size of N, in particular, is

irrelevant).

-6-



Then M!orrey's theorem and (2.6) io-l':

NI!< C( ! + 1)2 ,i il : +

C a(B) C (B)

The constant C does not depend on the location of the balls B C B, in n. This

estimate therefore implies

'lull N + 1)1 C 2 ,  x( e ) <-- C 2 , L ( n )

Ue recall next interpolation inequality

l 2 _ (,Rn) 'i-o llu'll
, n - C2,,,n) L' (]Rn)

(for some 0 < 1; cf. Friedman [31); this gives us the estimate

luC 1 N(l-0) 1. 1 N +I o2(]Rn) c(t2ull ( , )  
L U

(
e)

(2.8)
< ,( uN(l-0) + 1)

C(u c
2
,a ( n)

XPN

by (2.3). So far the constants C,N,p depend only on known quantities and do not

depend on X.

Now choose

C = 2C

C =C + 1
2 1

Since we have assumed

lll 2,( )  C2

(2.8) implips
C N(l-)+1)<2 c

(2.9) lull n c(cN(l- ) + a) _ 2c =
Cn 2 1

PN

for A > X 0 A0 large enough.

0

i -7-



3. PROOF OF THEOREM 1

We suppose now that 0 < a < I, )0, 0 < C1  C2  are the constants fr-.-
12

Lemma 2.3. We will prove that (1.4) has a solution u f ' (P',) f :Cne,'r

and a standard bootstrap argument then implies u c C
3
'' (,,

n ) 
for all . I.

For 0 1 t < i consider the problems

(3.1) t  Xu
t 

- Ft(D2utDut,ut,x) =0 in R

where

Ft(D w,Dw,w,x) E (1 - t) e Aw + tF(D w, Dww,x) .

Define

T ft f [0,111 (3.1)t has a solution u
t
, liutl c2 < Cl*

C (ip) -

0Obviously 0 f T, and u . 0. Notice also that standard theory implies the
t

uniqueness of the solutions u of (3.1)t with

lut 1 n2 , 5 n -1

It is also evident that T is closed: if {ti} C T, ti - t., then, since
t.

Ilu 111 is bounded, we have

3,y 0 n2,an

u - U in C
2
oc (Mn

and

t t.

1,01<lim inf u 1H< CC 2 , 
a(e~) -- i2 C, cc(ln) -

Finally we assert that T is relatively open in [0,1]. Once this is proved we

can conclude 1 c T; that is, (1.4) has a solution. Consider therefore the mapping

G(t,u) : [0,i] ' C 2 ( C' (R
n )

defined by

2
G(t,u) -fu - F t(D u,Du,u,x)

Clearly G is continuous. Its Frechet derivative in u at any point (t,u) is an

isomorphism according to standard theory for linear elliptic equations with H6"ider

continuous coefficients:

" I • -, ii | I I ,



5 (t,u)v I 'v - (U - t) v - ti-F (D-u,Du,u,x)v
u xx.

.*ij
F 2F

+- (Du,Duux)v + (D
2
uDu'ux)v

Note also that the mapping

(t,u) - G (t,u)
u

is continuous.

Now select any t, E T q (0,1) . By the implicit function theorem, there: exist
_ C

some : > 0 and a continuous function v (t - F,t + ) , (r n
) so that

0 0

t
G(t,v(t)) G(t ,u ) 0

Clearly

t
v(t) -=u

solves (3.1) * Since lu 0j < el, we have ! st C for
t 2 - 2, (n)

It - t01 < C,' small enough. Then Lema 2.3 implies

nu 1C 2, (]n) - 1

that is. (t - r',t o + E') C T.

Theorem I is proved.

-9-



4. PROOF OF THEOREM 2.

In proving Theorem 2 we may mimic with obvious modifications the calculations in

§3; the only real difficulty is to modify Lenas 2.2 and 2.3 to the case that 7

replaces IR here the extra hypothesis (1.7) is crucial to our argument.

Lemma 4.1. Assume that u E C3(7) (0 < a < 1) solves (1.6). Then there exists a

constant C such that

(4.1) u W ' ( ) < C0

C0  is independent of X, so long as is large enough.

Proof. As in the proof of Lemma 2.2, we may assume

IF
r (p,q,r,x) 0 for all p,q,r,x

The estimate

HA1 uJC
L (Q)

is then ixmnediate from the maximum principle.

We must next prove

(4.2) XjDuj C

for some constant C. To see this first choose any point x* C 3.Q. As 3) is smooth

and therefore satisfies the uniform exterior sphere condition, we may assume, upon a

change of coordinates if necessary, that

x*= (,. R)

B(O,R) 0 = x*

for some fixed R > 0.

Consider now the auxillary function

(4.3) v()M- (

' Rp  1 1

where p,p > 0 are to be selected. We have

x.
-1 1

-10-



and

V = _ -_ Q 3 X ,

so that

F (D v, Dv,VX) (tD V,tDv,tv,x)dt v

"0 Pij x

+ - (tD
2
v,tDv,tv,x)dt v

L0 1 2v Xi

+ I (tD v~tDv tvx)dtjv + F(,O,0,X)

F(0,0,0,x)

for p large enough. On the other hand since F(O,O,O,-) = 0 on 7y, we have

IF(O,o,O,x)l < MIX - **

where

x** e 32 belongs to the segment Ox

Ix**I >_R

But note also that

wv(x) > )(V(x) - v(x**)) =

= X - where x** = QX R C1 <

>_ C(l - a)IxI = jCx-x**I

for same constant C > 0. Hence

(4.5) Xv(x) > F(0,O,0,x) x e c

if p is large enough. According to (4.4) and (4.5) we have

X(v - ii) - [F( 2v,Dv,v,x) - F(D 2u,Du,u,x)] > 0 in Q

The maximum principle therefore implies

u < v in Q?

Since u(x*) = v(x*) = 0, we have

--.



u (x*) v(X*) -

d - n

A similar argument provides an upper bound. This proves (4.2).

The interior bound on Du is easy now. We differentiate (1.6) wit. r,

xk (k = 1,2,... ,n):

- 3F
Au F 4 U 1F -u

Xk )p 3p* x k x x ir xxjxij ij - ki --

Should + u attain its maximum at some point x0 c , we have

2
+Au (x ) <+F (D u(x ),Du(x ),u(x ),x0 ) < M
-x k0 -- x k 0 0 0 0

and should the maximum occur on 3Q, we recall (4.2).

Lemma 4.2. Fix some 0 < a < 1. Then there exist A0 > 0 and constants 2 C,

such that if u solves (1.6),

A > X0 ,

and

lull c2,( )  C2

then

ul < CI

Proof. As in the proof of Lemma 2.3 choose 6 and p so that

n

p

According to Lemma 4.1 and Lemma 6.2 in the appendix we have

(lull . C(ilull 2,, - + 1)

w ,  (Il) - C (7)

for some constants C and N. This estimate and a calculation almost precisel'" like

that in the proof of Lemma 2.3 imply the result.

-12-



5. COMMENITS AND EXTENSIONS.

a. Hypothesis (1.7)

A review of S3 and :4 makes it clear that the estimat-< U 4.1 r,

for our technique; for if the right hand side of (2 7) becomes -

we cannot then select 1. large enough to obtain (2.9). ',emma 4.1 1: tur .

on the assumption (1.7) (i.e. "F(0,0,0,x) = 0 on <') as th, folloin; : x. .

shows: Consider the problem

W u - u" = 1 on (0,i)

[ u(0) u(,) = n

Then

1 _____ 
e 1

1- e '7x __e'-I__-_uW =7 11- I ~,< e -i, e
ke -e ) Ie -e

so that

Xu' (0) C:A for large

In this case Lemma 4.1 fails, as do its obvious modifications (e.g. replacing t:1,

with L
p  

norms).

b. Neumann boundary conditions

Consider the p.d.e.

u -F(D .uDu,u,x) = 0 in
(5.1)

u

n an

when 2 is now assumed to be a smooth bounded, convex domain in ,
n  

and 2 en

the outward normal derivative. We claim that (5.1) admits a unique solution s~umin.

that X is large enough and F satisfies hypotheses (1.1) - (1.3); assumption 1.-l

is not needed here.

Indeed it suffices to obtain the bound

(5.2) IUI H_", ' C

for C independent of X, X large enough. Accordinq to Hopf's maximum .rincit1.

Jul must attain its maximum at some point of , whore as Yxfore

L()

-13-



Next a straightforward calculation shows us that

2
v -"Du

solves

- v - v- p. x x 'ci :<,
Pij I

(5.3)
= 2 -F( ) u - 'F( )

Xk X - UxkxI
'xk xk ij k' kV

If v attains its maximum in , the maximum I rinciple gi ves the iv.ir, e-t iat,

(5.3) vc.
L ()

On the other hand Lemma I.1 in P. L. Lions 16J implies

- , 1 on)n -

(the convexity of ' is used here). The Hopf maximum princirle therefore eliminates

the possibility that v attains its maximum only on

This proves the estimate (5.2) and - as noted - the remainder of the existence

proof for (5.1) follows as in Lenma 2.3 and S3.

-14-
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6. APPENf.: THE 'F. S??D- RDEP .'OEFFICIC NTS.

In 2 we made reference t , thct the de'ondence of the

Dstandard L
p  

elliptic estimates on] the "-nor of the o.econd~ ori~er coefficients:

nLemma 6.1. Let B and B, he two concntric closed balls in F. , of radius 1 and 2,
1 L

respectivel-Y. Assume that V 7'' (Bo) solvv, the linear equation

(6.1) -a. .(x)v + b.(x)v * c(x)v = f
1]~ X.X3 I X.i1J3

in B , where

a. b lIc! <aij'' i'' c, f

,6._) aj
x ,  

2 n
. i. , for all x,r , n

13I 1 '1

and

a.ij C (B ) for some 0

Then for each 1 < p < - there exist constants C and N, depending only on M,6,p,

and n, such that

(6.3) IVIIw2'P 1< C(la.IN + 1)(lfflL + IvW
L B

w 2, (B I) i C a(B 2 L
9
(B 2 L

9
(B 2

Proof.

The bound (6.3) is a standard consequence of linear L
p  

theory, except for the

stated dependence on the C -norm of the a..1)

Briefly then, let us first note that a solution v of

I Lv 
= 

f in B(R)

V = 0 near 3B(R)

(L denoting the operator in (6.1) and B(R) some ball of radius R) satisfies the

bound

(6.4) lID 2 14C(llf l + I11 1 ,L(B (R)) C L(B(R)) W
1
l' (B (R))

provided

(6.5) R, a1j II
C (~B(R))

-15-



for some small, but fixed constant t, (Proof: a standard nerturbation of

(cf. Ladyienskaja and Ural'ceva [4, p. 190-193) reduces (6.4) to the hkno.. ent:7nat

for A.) n
C I I"F

Now B, can be covered by K - la + balls B of radius

satisfying (6.5). We choose cutoff functions %k so that

0 C k = 1 on Bk,

(6.6) = 0 near .
2

Bk (2B ball concentric with B and with radis 5)

ID k I _ C , ID! I C_k Rk

and set [_1
(6.7)=

to obtain a partition of unity on B . Define

(6.8) k n v on 2Bk

We have

(6.9) LVk = kf - a ij[2v xkx. + V ]kx X I + bi.v -

Then (6.4) implies

K(6 0) ii2vl (1 )  K i 2 k lc l l~
(6.10) ijDv< I k Il< L I ( + l1 (3

(
2
Bk(B

2  W (B3/2

Similarly

__I < SK (ilfl l v i.
W' (B ) L (B) Lp(B )

The last two estimates, (6.5), and the definition of K give us (6.3).

For the proof of Lena 4.2 we need

Lemna 6.2. Suppose that u f C
3

'>( ) for some J < 1 solves

2
F(D u,Du,u,x) = f(x) in

(6.11u
Su =0 on C

-16-



for some f f WI (2). Then for each 1 < p < and 0 1 F 1 there exist constant.

C and N, depending only on M,g,p, , and 2, such that

(6.12) Ilull 3,p -C( lujjN2 , S 1)!If ,1
.) C '(.) w (:)

Proof. Differentiating (6.11) we note that v = u (the derivative of u in an

arbitrary direction ) satisfies

TF 2 ~F 2
(D u,Du,u,x)v + -( uDuux)v'Pij xi x'3 -1q-- (D '')x i

%F 23F
( 2u,Du,u,x)v = f, - (D 2u,Du,u,x)

the right hand side of this expression belongs to LP(-2). Now cover I with

n

K= C F( ) JIB, i+] balls Bk  of radius L, for R defined by
3ij C-(2) 2

R .____ ,
ij C (2)

r from (6.5); we may assume that those balls Sk  which intersect 4" are in fact

centered at a point belonging to 2.

Define k"k k,vk by (6.6)-(6.8).

Now if Bk C r for any given k = 1,2,...,k we recall estimate (6.4) for v = Vk'

If Bk - 31 , we transform coordinates to the case that K. - Bk C x = 0,

reflect Vk across the xn plane (assuming }k = 0 on jxn = 01), and again apply'

(6.4). This method yields a bound on fr C x Tp(B)he

remaining derivative ux n x we estimate using equation (6.13) for v = u X

Collecting together these bounds we obtain

N

ll W2 p () C(H!ullc2,6(Q ) + 1)(flDf11p + JIDF11 +1u1 2,p A

Applying a standard interpolation inequality completes the proof.
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